Г. А. Максимович, В. М. Шумков

ХИМИЧЕСКИЙ СОСТАВ ПЕЩЕРНОГО ЛЬДА

Изучение химического состава льда пещер СССР было начато автором и Г. Г. Кобяк в 1934 г. Химическому анализу подверглись ледяные кристаллы, сталактиты и сталагмиты, а также кора обледенения и покровный лед из Кунгурской ледяной пещеры (6). Долгое время это были единственные опубликованные анализы пещерного льда (2). А. В. Ступишин изучил лед Сюкеевских пещер. Пробы отбирались в 1949 и 1953 гг. (8). В нашей сводке были приведены только эти химические анализы льда из гипсовых пещер, а также пещеры Глухой в известняках (4).

В последнее время опубликован еще один химический анализ льда из Кочменской пещеры в гипсах (7) и Пропасти Вахушти Багратиони в известняках (1). Кроме того, в гидрогеохимической лаборатории кафедры динамической геологии и гидрогеологии Пермского университета Т. В. Кирилловых произведены анализы льда из Казаевской, Октябрьской и Кунгурской пещер в гипсах и Губахинской пещеры в известняках. Пробы эти в основном доставлены В. М. Шумковым. Накопился уже некоторый материал, позволяющий более обстоятельно охарактеризовать химизм пещерного льда. Данные эти сведены в таблицу, где не приведены ранее публиковавшиеся анализы по Кунгурской ледяной пещере (2, 6). По данным 24-х анализов построен график (рис. 1).

В пещерах в известняках минерализация льда 84–292 мг/л и преобладает гидрокарбонатно-кальциево-сульфатная, а иногда встречается гидрокарбонатно-кальциево-натриевая гидрохимические фации. Минерализация гидрогенного льда пещер в гипсах 699–2176 мг/л, причем он относится к сульфатно-кальциевой, сульфатно-кальциево-натриевой гидрохимическим фациям. Натрий в качестве третьего компонента, как и для пещер в известняках, вероятно обусловлен посещаемостью пещер.

Кристаллы льда в гипсовых пещерах имеют минерализацию (4) 41-299 мг/л и относятся при минерализации до 50 мг/л к HCO_3 - SO_4 -Ca, а при большей SO_4 -Ca-Cl гидрохимическим фациям. График показывает зависимость гидрохимических фаций пещерных льдов от общей минерализации. Пределы их для льдов и подземных озер (3, 5) в известняках и гипсах в мг/л следующие:

пещерные	HCO ₃ -Ca	SO ₄ -HCO ₃ -Ca	SO ₄ -Ca-(HCO ₃)
льды	<250	355–475	>475
озера	< 550	650-1250	>1250

Повышение минерализации пещерного льда сопровождается изменением соотношения главнейших ионов. В гипсовых пещерах даже при малой минерализации преобладает сульфатный ион.

Пределы минерализации гидрохимических фаций пещерного льда меньше, чем у озер. Это обусловлено составом вод которые замерзли, формой и ориентировкой кристаллов льда, сублимацией, возрастом льда и другими факторами. В гипсовых пещерах уменьшение минерализации покровного льда при сублимации обусловлено образованием порошка кристаллов гипса на его поверхности. Возможно, что эти кристаллы возникают и в результате вымораживания растворенных веществ воды. Вопрос этот требует дальнейшего изучения.

	Пещеры в известняках							Пеі	церы в	гипса	X								
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
Дата анализа	12/V	9/V	11/V	9/V	11/V	12/V	18/XII	20/VI	30/XII	10/X	8/XII	9/XII	7/XII	15/V	3/III	8/III	3/III	8/III	
дата анализа	1961	1961	1961	1961	1961	1961	1959	1961	1960	1961	1960	1960	1960	1960	1949	1953	1949	1949	
Cl`	-	ı	11	11	11	11	7	3	7	ı	4	4	11	-	5	-	30	_	
SO ₄ ``	24	24	8	24	60	8	12	9	514	1129	1477	865	1417	437	972	899	76	966	
HCO ₃ `	122	128	195	146	134	183	85	49	61	61	61	49	73	61	152	_	61	_	
Ca``	48	46	62	64	74	50	30	2	140	461	565	331	537	196	291	327	38	264	
Mg``	2	5	1	2	1	5	4	1	7	12	16	18	33	4	0,1	22	_	53	
Na`+K`	0,3	2	15	1	1	17	3	20	109	12	53	20	34	1	193	13	14	59	
Общая	196,3	205	292	248	281	274	141	84	838	1675	2176	1287	2105	699	1613.1	1261	164	1342	
минерализация	190,3	203	292	240	201	2/4	141	04	030	1073	2170	1207	2103	099	1015,1	1201	104	1342	
Гидрохимическая фация	ГКС	ГКС	ГКН	ГКС	ГКС	ГКН	ГКС	ГКС	СКН	СКГ	СКГ	СКГ	СКГ	СКГ	СКН	СК	СКХ	СКН	

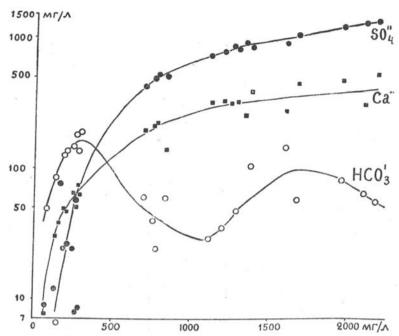


Рис. 1. Изменение гидрохимических фаций пещерного льда в зависимости от общей минерализации.

ЛИТЕРАТУРА

- 1. Кикнадзе Т. Образование пещерного льда в карстовой пропасти Вахушти Багратиони. Сообщения Академии наук Грузинская ССР, т. 31, № 2, 1963.
- Максимович Г. А. Химическая география вод Суши, гл. VI, Географгиз, М., 1955.
- Максимович Г. А. Озера карстовых пещер, колодцев и шахт. Пещеры, вып. 2, Пермь, 1962. Максимович Г. А. Пещерыые льды. Основы карстоведения, т. 1, гл. IX, Пермь, 1963.
- Максимович Г. А. О химическом составе подземных карстовых озер СССР. Химическая география и гидрогеохимия вып. 2(3), Пермь, 1963.
- Максимович Г. А., Кобяк Г. Г. Характеристика льда Кунгурской пещеры. Доклады АН СССР, т. 31, N 5, 1941.
- Охапкин В. Г., Щеглов В. Д. Химический состав озерной воды и льда Кочменской пещеры. Химическая география и гидрогеохимия, вып.
- 8. Ступишин А. В. Пещерные льды Среднего Поволжья и природа их образования. Спелеология и карстоведение. Изд. МОИП, М., 1959.

Пермский университет

Вып. 3 (4)

Пермь, 1964

Г. А. Максимович, В. М. Шумков

химический состав пещерного льда

Изучение химического состава льда пещер СССР было начато автором и Г. Г. Кобяк в 1934 г. Химическому анализу подверглись ледяные кристаллы, сталактиты и сталагмиты, а также кора обледенения и покровный лед из Кунгурской ледяной пещеры (6). Долгое время это были единственные опубликованные анализы пещерного льда (2). А. В. Ступишин изучил лед Сюкеевских пещер. Пробы отбирались в 1949 и 1953 гг. (8). В нашей сводке были приведены только эти химические анализы льда из гипсовых пещер, а также

пещеры Глухой в известняках (4).

В последнее время опубликован еще один химический анализ льда из Кочменской пещеры в гипсах (7) и Пропасти Вахушти Багратиони в известняках (1). Кроме того, в гидрогеохимической лаборатории кафедры динамической геологии и гидрогеологии Пермского университета Т. В. Кирилловых произведены анализы льда из Казаевской, Октябрьской и Кунгурской пещер в гипсах и Губахинской пещеры в известняках. Пробы эти в основном доставлены В. М. Шумковым. Накопился уже некоторый материал, позволяющий более обстоятельно охарактеризовать химизм пещерного льда. Данные эти сведены в таблицу, где не приведены ранее публиковавшиеся анализы по Кунгурской ледяной пещере (2, 6). По данным 24-х анализов построен график (рис. 1).

В пещерах в известняках минерализация льда 84-292 мг/л и преобладает гидрокарбонатно-кальциево-сульфатная, а иногда встречается гидрокарбонатно-кальциево-натриевая гидрохимические фации. Минерализация гидрогенного льда пещер в гипсах 699-2176 мг/л, причем он относится к сульфатно-кальциевой, сульфатно-кальциево-гидрокарбонатной,

	Пещеры в известняках										
	1	2	3	4	5	6	7	8			
Дата анализа	12 V 1961	9/V 1961	11/V 1961	9/V 1961	11/V 1961	12/V 1961	18/XII 1959	20 VI 1961			
Cl'		_	11	11	11	11	7	3			
SO ₄ "	24	24	8	24	60	8	12	9			
HCO' ₃	122	128	195	146	134	183	85	49			
Ca"	48	46	62	64	74	50	30	2			
Mg"	2	5	1	2	1	5	4	1			
Na·+K·	0,3	2	15	1	1	17	3	20			
Общая минерали- зация	196,3	205	292	248	281	274	141	84			
Гидрохимическая фация	ГКС	ГКС	ГКН	ГКС	ГКС	ГКН	ГКС	ГКС			

Примечания. Для гидрохимических фаций применяются следующие Пещеры: Губахинская п. 1— Кора оледенения, 2, 3, ледяные сталагмиты. 9— Кунгурская п., покровный лед. 13— ледяные сталактиты. 4— Казаевская п., ледяная, кристаллы, 18— гипсовая штольня, ледяной сталагмит.

сульфатно-кальциево-натриевой гидрохимическим фациям. Натрий в качестве третьего компонента, как и для пещер в известняках, вероятно обусловлен посещаемостью пещер.

Кристаллы льда в гипсовых пещерах имеют минерализацию (4) 41-299 мг/л и относятся при минерализации до 50 мг/л к HCO₃-SO₄-Ca, а при большей SO₄-Ca-Cl гидрохимическим фациям. График показывает зависимость гидрохимических фаций пещерных льдов от общей минерализации. Пределы их для льдов и подземных озер (3, 5) в известняках и гипсах в мг/л следующие:

пещерные	HCO ₃ -Ca	SO ₄ -HCO ₃ -Ca	SO ₄ -Ca-(HCO ₃)
льды	<250	355—475	>475
озера	<550	650—1250	>1250
44			

9	10	11	12	13	14	15	16	17	18
30/XII 1960	10/X 1961	8 XII 1960	9/XII 1960	7 XII 1960	15 V 1960	3 III 1949	8 III 1953	3/III 1949	8/III 1949
7		4	4	11	_	5	_	30	-
514	1129	1477	865	1417	437	972	899	76	966
61	61	61	49	73	61	152	_	61	_
140	461	565	331	537	196	291	327	38	264
7	12	16	18	33	4	0,1	22	-	53
109	12	53	20	34	1	193	13	14	59
838	1675	2176	1287	2105	699	1613,1	1261	164	1342
СКН	СКГ	СКГ	СКГ	СКГ	СКГ	СКН	СК	СКХ	СКН

обозначения: X—Cl', C—SO $_4''$, Г—HCO $_3'$, К—Ca··, H—Na·+K·. 4, 5— Покровный лед, 6— Ледяные сталагмиты, 8—Пропасть Вахушти, 10—Кочменская п., покровный лед. Октябрьская п. 11, 12— покровный лед, сталактиты. Малая Сюкеевская п. 15, 16— ледяные сталагмиты, 17— ледяные

Повышение минерализации пещерного льда сопровождается изменением соотношения главнейших ионов. В гипсовых пещерах даже при малой минерализации преобладает сульфатный ион.

Пределы минерализации гидрохимических фаций пещерного льда меньше, чем у озер. Это обусловлено составом вод которые замерзли, формой и ориентировкой кристаллов льда, сублимацией, возрастом льда и другими факторами. В гипсовых пещерах уменьшение минерализации покровного льда при сублимации обусловлено образованием порошка кристаллов гипса на его поверхности. Возможно, что эти кристаллы возникают и в результате вымораживания растворенных веществ воды. Вопрос этот требует дальнейшего изучения.

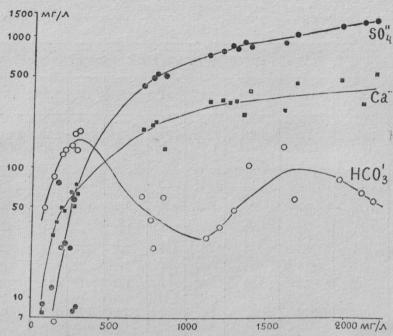


Рис. 1. Изменение гидрохимических фаций пещерного льда в зависимости от общей минерализации.

ЛИТЕРАТУРА

1. Кикнадзе Т. Образование пещерного льда в карстовой пропасти Вахушти Багратиони. Сообщения Академии наук Грузинская ССР, т. 31, № 2, 1963.

2. Максимович Г. А. Химическая география вод Суши, гл. VI, Географгиз, М., 1955.

3. Максимович Г. А. Озера карстовых пещер, колодцев и шахт. Пещеры, вып. 2, Пермь, 1962.

4. Максимович Г. А. Пещерные льды. Основы карстоведения, т. 1, гл. IX, Пермь, 1963.

5. Максимович Г. А. О химическом составе подземных карстовых озер СССР. Химическая география и гидрогеохимия вып. 2(3), Пермь, 1963.

6. Максимович Г. А., Кобяк Г. Г. Характеристика льда Кунгурской пещеры. Доклады АН СССР, т. 31, № 5, 1941.

7. Охапкин В. Г., Щеглов В. Д. Химический состав озерной воды и льда Кочменской пещеры. Химическая география и гидрогеохимия, вып. 2(3), Пермь, 1963.

8. Ступишин А. В. Пещерные льды Среднего Поволжья и природа их образования. Спелеология и карстоведение. Изд. МОИП, М., 1959.

Пермский университет